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A theory of dry (containing no solvent) layers of polymer chains grafted onto the internal and external 
surfaces of an infinite cylinder has been developed. The geometric and thermodynamic characteristics of 
layers were investigated for two cases: for chains of the same length (monodisperse distribution) and for a 
mixture of chains of two different lengths (bidisperse distribution). It is shown that the thermodynamic 
advantage of mixing chains of different lengths demonstrated previously for the case of a planar layer is 
particularly pronounced for a concave cylindrical layer densely filling a cylindrical pore. The results obtained 
make it possible to investigate the thermodynamics of superstructures formed by mixtures of diblock 
copolymers of the AB type with different block length. 
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INTRODUCTION 

In the first paper in this series, an analytical theory of 
the structure and properties of planar layers of grafted 
polydisperse chains has been developed 1. Using this 
theory, lamellar structures formed in the melts of 
polydisperse block copolymers under the conditions of 
strong segregation have been investigated 2. A binary 
mixture of diblock copolymers of the AB type with 
different molecular weights and compositions has been 
studied in detail. It has been shown that in a mixture of 
high molecular weight lamellae-forming block copoly- 
mers, a single lamellar structure formed by block 
copolymers mixed on the molecular level can be 
thermodynamically stable. Equilibrium characteristics of 
this structure, i.e. its period, the thickness and a detailed 
organization of lamellar sublayers have been obtained. 
These parameters are functions of the free-end 
distribution of blocks and their local stretching in the 
sublayers depending on the mixture composition and the 
molecular weights of the blocks. The theoretical conclu- 
sions 2 have been compared to experimental results 3-5. 

The extension of this investigation on the superstruc- 
tures with different morphologies requires further 
development of the theory of layers of chains grafted onto 
both the internal and external surfaces of the matrices 
with different non-planar geometries. In this paper this 
is carried out for the case of layers of polymer chains 
grafted onto the surfaces of an infinite cylinder. A layer 
formed by a mixture of polymer chains with degrees of 
polymerization N1 and N 2 (layer of bidisperse chains) will 
be taken as an example of a layer of polydisperse chains 
(as in ref. 1). We restrict ourselves to the analysis of 'dry' 
layers which contain no solvent and, in the case of 
concave layers, densely fill the cylindrical pore. It is this 
situation that exists in block copolymers under the 
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conditions of well organized superstructure in the absence 
of solvent. 

We begin with a brief consideration of monodisperse 
cylindrical layers of grafted chains. In this case, just as 
for bidisperse layers, we restrict ourselves to the case of 
a 'dry' layer, i.e. free of solvent. A detailed analysis of 
the structure and properties of cylindrical layers of 
monodisperse chains over a wide range of solvent 
strength (from an athermal solvent to a strong 
precipitant) will be given elsewhere. Some results for 
non-planar layers of monodisperse chains have pre- 
viously been obtained 6-~°. In reference 10 weakly 
bending layers formed by grafted chains of two lengths 
have also been considered. 

The results obtained here and in the previous papers 
in this series will be used as a basis for the theory of 
cylindrical and lamellar superstructures formed in binary 
mixtures of cylinder- and lamellae-forming block 
copolymers (see the next paper). 

MONODISPERSE CYLINDRICAL LAYERS 

A system of polymer chains consisting of N 1 units grafted 
at one end onto the surface of an infinite cylinder of 
radius R (Figure 1) is considered, with a being the average 
grafting area per chain. As previously l'z, part of a chain 
of length equal to the chain thickness a is chosen as a 
unit; the asymmetry parameter of the Kuhn segment A is 
p = A/a >/1. The chains in the layer are grafted relatively 
densely so that they are stretched. However, the grafting 
density is far from the limiting value, i.e. a/a = >> 1. 

Theory 
The equilibrium characteristics of a cylindrical layer 

of grafted monodisperse chains may be obtained on 
the basis of an analytical approach developed pre- 
viously 1'1x-16. Thus, the conformational free energy of 
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Figure 1 Cylindrical concave (a) and convex (b) chain layers 

the layer per unit grafting area AF may be represented as: 

AF = AF~j + AF~o.~ 

f f/ _ 3 n,o g(x') dx'  E(x,  x') dx 
2pa .j o 

a 2 (" '° ~(x)  
+ - -  a 3 f[tp(x)] dx (1) 

a J o  
where the first term takes into account the contribution 
of elastic chain stretching normally to the grafting surface, 
and the second term is the contribution of volume 
interactions between polymer units in a layer. Here, as 
previously 1, E(x, x') is the function of local stretching of 
a grafted chain at point x under the condition that its 
free end is at a point x'>~ x; g(x') is the distribution 
function of free ends of grafted chains; f[~o(x)]a- 3 is the 
density of volume interactions free energy, where ~0(x) is 
a density profile of polymer units; Hlo is the layer height 
(subscript 10 implies that only N 1 chains are present in 
the layer) and 

(R + x) 
~(x)  = ~ - -  (2) 

R 

is the effective area per chain at a distance x from the 
cylinder surface (the ' + '  sign corresponds to a convex 
surface, whilst the ' - '  sign corresponds to a concave 
surface). (Here and below all energetic values are 
expressed in kT units.) 

The relation of the density profile ~0(x) to the functions 
E(x, x') and g(x') is determined by the equation: 

a 3 f 1t,o g (x ' )dx '  fn,o (p(x)a(x) 

=  ff) 1 x') !o o 
dx N1 

• ,x a3 

(3) 
In the case of the 'dry' layer we have 

tp(x)--- l (4) 

and AFco.c in equation (1) becomes a constant. 
The minimization of AF taking into account the 

additional normalization condition 

fo:' N1 (5) 
dx 

E(x, x') 

makes it possible to determine the unknown functions 
E(x, x') and g(x') and to calculate the conformational 
free energy of the layer. 

Equations (1), (3) and (5) are equivalent to the 

corresponding equations in references 1 and 12 in which 
the structure and properties of planar layers of grafted 
monodisperse chains are considered. The difference is 
only in the appearance of the dependence a(x) according 
to equation (2). The transition to the planar layer is 
carried out at R --, oe. The characteristics of the planar 
layer are designated by indices 'lam' and '10' and are 
treated as the initial characteristics, so that the change 
in the characteristics of a planar layer upon its bending 
into a cylindrical layer is considered at a fixed grafting 
density (a is a constant). 

Let us introduce the following relative variables: the 
coordinate z = x/Hl(g,  the layer height h = H/H'~g and 
the radius of the cylindrical surface r = R/H~(g. In the 
case of a 'dry' layer, when ~o(x)= 1 and 

0") 1 
H~(g = aN 1 ~ (6) 

the relative size of the cylindrical layer is given by 

h = _+ (r - x / ~  -T- 2r) (7) 

where the upper signs correspond to a concave surface, 
and the lower signs correspond to a convex surface. It 
is clear from equation (7) that in the case of a concave 
surface, the conditions h ~< r* and r 1> r * =  2 should be 
met. (At r =  r*=  2 the inner cylinder space free of 
polymer units disappears, and all the inner part of the 
cylinder is densely filled with polymer units.) In the case 
of a convex surface the radius of the surface curvature 
does not impose any restriction on the layer height. 

Concave cylindrical layer. Let us first consider the case 
of a concave cylindrical surface. The details of the 
calculation are given elsewhere 1'12 and only the main 
results are reported here. 

(1) Local stretching function. The analysis of the 
variation problem in equations (1)-(5) shows that the 
local stretching function E(x, x') of grafted chains in a 
concave layer does not depend on the layer geometry 
and the solvent quality and coincides with that of the 
local stretching in a planar layer. 

Elamtx xq  7z E , o ( X ,  x ' )  = 1 o ,  , ' = - ( 8 )  

(2) Free-end distribution. The function of the free-end 
distribution g(z) is obtained by the inversion of integral 
equation (3) and the application of condition (4) and 
equation (8) as well as the normalization condition 
~h o g(z) dz = 1, 

2z_ h, r - h  + ~ z h 2 - z  2) 
g(z) - h(2r ( ~ 2  + In h (9) 

It should be noted that the function g(x') in equation (1) 
has the dimension of inverse length (it is normalized in 
the range of O<~x'<~H) and the function g(z) is 
dimensionless (it is normalized in the range of 0 ~< z ~< h). 
This also concerns the pair of functions u(x) (with the 
dimension of length) and u(z) (a dimensionless function) 
considered below. 

The first term in the function g(z) in equation (9) gives 
the same functional dependence on z for a concave 
cylindrical layer as for a planar layer 9. With increasing 
matrix curvature, 1/r, the contribution of this term 
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Figure 2 Distribution function of free chain ends, equation (9), in a 
concave cylindrical monodisperse dry layer for the values of 
r = R/I4~y = ~ (A), 3.6 (B), 2.25 (C), 2.006 (D) and 2 (E) 

where 

zo -~ppNx a2 (15) 

It can be seen from equation (14) and Figure 4A  that the 
free energy increases with the curvature of the cylindrical 
matrix 1/r. It increases twice on passing from a planar 
layer 1/r = 0 to a layer of limiting thickness at r = r* = 2 
and h/r = 1. 

Convex  cylindrical layer. Let us now consider a layer 
of polymer chains consisting of N 1 units grafted onto the 
external surface of the cylinder (Figure Ib).  The formal 
transition from a concave to a convex layer is carried 
out by the replacement of r by - r  in equations (8)-(13) 
[cf. equation (2)]. In this case the local stretching function 
E(x ,  x ')  retains its shape [equation (8)]. However, the 
end distribution function g(z) [equation (9)] changes 
markedly. The replacement of r by - r leads to a change 
in the sign of the second term in equation (9), and hence 
to the appearance of a range ofz values in which #(z) < O. 
This unrealistic result indicates that the so-called 'dead' 

decreases and that of the second term increases. As a 
result, the function g(z) becomes broader (Figure 2). 
According to equation (9), the average height of free ends 
[the first moment g(z)] is given by: 

1 f f  ~ 3 - 2h/r  (10) 
h - h zg(z) dz - 6 2 - h/r  

and the distribution dispersion is given by: 

x / 0 . 7 3 -  0 . 1 6 h / r -  0.35(hlr)  2 
D L (~)2 j ~ 3 - 2 h / r  

(1 1) 

It is clear from these equations that with an increase in 
h/r  from zero (planar layer) to unity (r -- h = r*), the value 
of l / h  decreases from n/4 to n/6, and dispersion D 
increases from ~0.3 to ~0.5 (Figure 3). 

Let us now consider the thickness h~ of the sublayer 
in which the free ends of the fraction ql = 1 - q2 of grafted 
chains are located. Using the distribution function g(z) 
of chain ends [equation (9)] yields: 

f; q2 = g(g)  d z  

= x /1  -- (h'~/h~ - (h~)2 In (h'~/h) (12) 
2r 1 - x / 1  - (h'l/h) 2 

It follows from equations (7) and (12) that at a given 
fraction of the chains ql the relative thickness of the 
sublayer h'l/h increases with r. In the limit, r ~  oo, 
equation (12) gives an asymptotic dependence 

h'~/h = ~/1 - q2 (13) 

characteristic of a planar layer 1. 

(3) Free energy. Considering the results of equations 
(8) and (9), the elastic part of the conformational free 
energy of the layer per unit grafting a r e a  a 2 is given by: 

Agla m 2(4 - 3h/r)  
A F =  lo ~ ~ h/~3 (14) 

1t 
0.. ~ 

f J  
/ 

7' - _ / 0  t. I I =,_ 
2 0 0.2 1 h/r 

Convex layer Concave layer 

Figure 3 Averageheightsoffreeends~/handdispersionDversush/r; 
, equat ions (10) and (11); - - - ,  equat ions (16), (17) and F E F  

approximat ion  (~./h = 1, D = 0) 

~F  
AF~m 

I I I J 
1 0.5 0 0.5 1 h/r 

Convex layer Concave layer 

Figure 4 Free energy of concave and convex cylindrical layers. Curve 
A, - - ,  equation (14); - - - ,  equation (18); . . . ,  equation (18a). 
Curve B, FEF approximation, equations (21) and (46) 
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zone appears where the free ends of grafted chains are 
excluded, and adjoins the cylinder surface. The existence 
of these 'dead' zones in non-planar convex layers was 
first reported in reference 9. The correct solution of the 
problem of the convex layer requires, therefore, the 
inclusion of an additional condition #(z) = 0 in the range 
of the dead zone, which greatly complicates equations 
(1)-(5). 

However, it can be easily shown z° [with the aid of 
equation (9) if r is replaced by - r] that the width of the 
dead zone decreases exponentially with decreasing matrix 
curvature 1/r. This makes it possible to carry out the 
analytical continuation ~ o of the results of equations (10), 
(11) and (14) for concave layers to the case of weakly 
convex layers h/r << 1. Thus, the expansion of equations 
(10), (11) and (14) for the small parameter h/r and the 
change in the sign of r give 

~ [  1 ( ! ) ]  -- 0.78(1 -- O.17h/r) 1 - 6  _ (16) 

D ~ 0.28(1 + 0.56h/r) (17) 

AF ~ AF~'(1 - 0.75h/r) (18) 

Note that equation (18) has already been obtained in 
reference 10. The broken lines in Figures 3 and 4 show 
the analytical continuations given by equations (16)-(18). 
The dotted line in Figure 4 shows the analytical 
continuation of dependence (14) (r --* - r )  

AF = AFt~  2(4 + 3h/r) (18a) 
(2 + h/r) 3 

in the whole range of h/r. 
Let us now consider the convex layers of a considerable 

curvature for which h/r > 1 and the dead zone is wide. 
It is this situation that occurs in the superstructures of 
block copolymers. As mentioned in reference 9, the 
simplest assumption that the ends of all the grafted chains 
are fixed at the external boundary of the layer is a 
relatively good approximation for describing the 
characteristics of these layers 

9(z) = 6(h - z) (19) 

In fact, it can be seen in Figure 3 and equations (10) and 
(16) that the mean height of free chain ends is 
monotonically displaced towards the periphery of the 
concave layer when the degree of concavity decreases. 
The same tendency remains upon passing from the planar 
layer into the range of increasing convexity of the surface. 
The dispersion of the end distribution function decreases 
simultaneously. It can be seen in Figure 3 that the use 
of approximation (19) leading to f/h = 1 and D = 0 is 
quite permissible for a convex layer at h/r > 1. 

Taking into account equations (1)-(5) and (19) we 
obtain for strongly convex 'dry' layers h/r > 1 the local 
stretching function 

a3r 
Elo - (20) 

a(r + z) 

and the conformational free energy 

AP = AP'I~ ' 2 In(1 + h/r) _ AI~I?~ n ~ ln(1 + 2/r) 
(h/r)(2 + h/r) 

(21) 

where 

3 N1 ( a )  -3 12 

is the conformational free energy of a planar layer 
calculated under the approximation of free ends fixation 
of the external boundary (FEF approximation). Here and 
below the sign (~ )  refers to the values calculated with 
the aid of the FEF approximation. 

LAYERS OF BIDISPERSE CHAINS 

Let us now consider a 'dry' layer formed by a binary 
mixture of chemically identical polymer chains with 
degrees of polymerization N 1 and N2 > N1 grafted at a 
density of 1/a onto the surface of a cylinder of radius R. 
As has already been mentioned, it is assumed that the 
grafting density causes all chains to be stretched. The 
effect of polydispersity on the characteristics of planar 
grafted layers has been investigated in detail else- 
where L16. In particular, it has been shown that in the 
case of a bidisperse distribution in chain length, the free 
ends of short and long chains are segregated: the ends 
of shorter chains are distributed in the layer adjoining 
the grafting plane (short-chain sublayer), whereas the 
ends of long chains are concentrated in the peripheral 
part of the layer (long-chain sublayer). This effect is 
related to the tendency of the chains in equilibrium to 
minimize their stretching. It is clear that the same effect 
should also be observed in layers with other geometries. 
In particular, in a concave cylindrical layer, the ends of 
short chains should be located in a cylindrical layer of 
thickness H1 adjoining the cylinder surface (short-chain 
sublayer), whereas the ends of long chains are 
concentrated near the cylinder centre (long-chain 
sublayer). 

Concave layer of bidisperse chains 
Theory. As before 1, let ql and q2 be the fractions of 

chains of lengths N~ and N z in the layer, and 
~ = ( N z - N x ) / N  ~ be the relative difference in the 
molecular weights of grafted chains. If the segregation of 
free ends is taken into account, the free energy functional 
(1) becomes: 

AF= 3 fo" f[' 2pa gl(x') dx' El(x, x') dx 

+ 2pa g2(x') dx' E2(x, x')dx 
1 

a2foU   x + f[q~l(x) + ~o2(x)] dx (23) 

where subscripts 1 and 2 correspond to short and long 
chains, respectively. The additional relations (3) and (5) 
change correspondingly 

fo dx _ El(X, x') N, i =  1, 2 (24) 

a3 Cn'g,(x')dx' fo ' la_~ 
¢Pz(x) = ~ x )  Jx EI(x,x' ) qg'(x)dx=q'N1 

(25) 
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a 3 I r2 ~2(X' )  d x '  

~2(x) = ~ .l~,. . ,x, . .  e~(x, x') 
(26) 

fo ~ ~(x) . . . .  7 (P2[X) f ix  = q21v2 

The normalization conditions for functions g(x') are 
given by 

I? ;? 01(x') dx' = ql g2(x') dx' = q2 (27) 

For the dry layer, we have 

~o(x) = ~ol(x ) + q~2(x) = 1 (28) 

The minimization of equation (23) and taking into 
account equations (24)-(28) determines the functions 
Ei(x, x') and g~(x') and the thickness H1 and H2 of the 
concave cylindrical layer. 

(1) Local stretching functions. The analysis of the 
variation problem in equations (23)-(28) shows that the 
functions of local stretching of short and long chains in 
a cylindrical layer completely coincides with those in a 
planar layer m2. Thus, we have 

, / ( X ' )  2 - -  X 2 (29)  El(x,  x') = E~o(X, x') = 2 ~  

~, /u~(x  ') - x ~ 0 < x < n~ 

e 2 ( x  , x ' )  ---- ~ 1  ( , / u 2 ( x  ')  - -  u 2 ( x )  H1 < x < U 2 
(30) 

where the function 

u(x) = x - a , / x  2 - U~(1 - a z) 
1 --a  2 

= HI~  z - ct,/z 2 -- h2(1 - a 2) 

1 - ~ t  2 

= Hindu(z) (31) 

has been obtained in reference 16 in the analysis of a 
planar layer of bidisperse chains. In the last equality the 
relative thickness of a short-chain sublayer hi = H1/HI(~ 

/ IL/lam and the relative coordinate z = x / , ,  lo were introduced. 

(2) Layer thickness. Let us consider in detail the 
characteristics of a layer under the conditions when the 
polymer units completely fill the interior of a cylinder of 
radius R. (This situation may be observed in cylindrical 
domains in the melts of bidisperse block copolymers 
forming a cylindrical superstructure.) 

In this case the relative radius of the cylinder 
r = R / H I ~  a is related to long-chain fraction q2 and the 
relative difference in the chain lengths 0¢ by the 
relationship 

r = 2(1 + 0~q2 ) (32) 

and 
__ l a i n  (33)  h 2 - -  H2/Hlo = r 

The condition of dense packing of polymer units inside 
a pore [equation (28)] makes it possible to calculate the 
functions of free end distribution g l (z) and g2 (z) inversing 
integral equations (29) and (30) to the functions E~ (x, x') 
and E2(x, x'). Furthermore, using the normalization 
condition (27), the thickness of the short-chain sublayer 
Hx will be determined. Omitting intermediate calcula- 

tions, only the resulting equation relating the thickness 
hi = HI /H1~ of a short-chain sublayer to • and q2 is 
reported 

q2 _ ` / 1  - ( h l / r )E (1 -a  2 ) -  

1 + 0~q2 1 - -  O~ 2 

h2 In (hffr)(1 - ~) (34) 

r2 1 - , / 1  - (hx/r)2(1 - ~ )  

Figure 5 shows the dependence of the ratio hffh on g2 
calculated from equation (34) for various values of ~. 
Here, as before, h is the height of a layer of homodisperse 
chains of length N1 [equation (7)] grafted onto a cylinder 
of radius r [equation (32)]. It is clear that the parameter 

determining the degree of polymerization of long chains 
profoundly affects the shape of the dependence of hl /h  
on composition q2. With increasing ~ the curvature of 
this dependence and hence the relative thickness hl/h at 
a given q2 also increase. This change is partially due to 
an increase in the cylinder radius r [equation (32)] and 
is qualitatively equivalent to that observed for the layers 
of monodisperse chains grafted onto cylinders of various 
radii [equation (12)]. However, equations (12) and (34) 
are different, and the comparison of the relative thickness 
of the short-chain sublayer hi/h and the relative thickness 
h'~/h [equation (12)] of the part of the layer of 
monodisperse chains grafted onto a cylinder of radius 
r = 2(1 + ~q2) (Figure 6) shows that h'ffh is always slightly 
higher than hl/h. This difference increases with ~ and 
attains a maximum value at ~ - oo (r -~ oe) (cf. curves 
D and E in Figure 5) when equation (12) turns into 
equation (13). For equation (34) the asymptote at ~ - ,  o0 
is different: 

4q 2 hffh [ 4q 2 . 2q2 -] 
2 - 1 +  In l +  

hffh ~ + 2q2 [ ~ -I- h ~ J  (34a) 

h l ~  

h 

0.5 _ 

0 0.5 1 q2 

F i g u r e  5 Ratio of the thickness h a of a short-chain sublayer in a 
bidisperse layer of grafted chains to the total thickness h of 
monodisperse layer, equations (7), (32) and (34), versus q2 at different 
ct = 0 (A), 0.1 (B), 0.86 (C), ~ (D). The asymptotic dependence h'l/h 
on q2 in a monodisperse layer, equation (13) is shown in (E) 
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N1 N 2 ~ h  2 / r 

r 

a b 
Figure 6 Scheme for concave cylindrical layers: (a) bidisperse layer 
with r, cylinder radius, h2, thickness of long-chain sublayer and h 1, 
thickness of short-chain sublayer; (b) monodisperse layer with r, 
cylinder radius, h' 1, thickness of the sublayer in which the free ends of 
chain fraction ql = 1 - q2 are located and h, total layer thickness 

It will be recalled I that for a planar layer equation (13) 
remained valid for both mono- and bidisperse chains. 
The reasons for this and other differences in the behaviour 
of planar and concave layers will be discussed below. 

(3) Length of the tie part of long chains. Let us introduce 
the average value f iN 1 of the tie part of long chains in 
the short-chain sublayer: 

1 ~  n~ fo" dx 
fiN, = q22 Jn, g2(x') dx' E2(x, x') (35) 

In the case of a dry layer, the mean length flN~ of the 
tie part is related to the thickness of the short-chain 
sublayer by a simple relationship 

f l=[  hl(1-h' /2r)  (1 -- q2)] (36) 

q2 q2 J 
in which the dependence of h, on q2 and 0( is determined 
by equation (34). Figure 7 shows the dependence 
fl= fl(qz) for different values of 0(, calculated from 
equation (36). It is clear that at given qz the length of 
the tie chain increases with 0( (i.e. with r), which is 
equivalent to the increase in the sublayer thickness 
mentioned above. Equation (36) also describes [if h, is 
replaced by h' 1, equation (12)] the mean length of a chain 
part in a layer of monodisperse chains passing through 
the sublayer which adjoins the matrix and in which the 
ends of the fraction of q, chains are located. As before, 
the matrix radius is found from equation (32). As has 
been mentioned above, in the case of monodisperse 
chains, the sublayer thickness is always greater than for 
bidisperse chains (other conditions being equal). 
Correspondingly, the length of fl is also slightly greater 
for monodisperse chains, the difference increasing with 
0(. The maximum difference is observed when the layer 
of monodisperse chains becomes equivalent to a planar 
layer, and for this layer we have: 

f l=  1 ( x / j ~ q ~ _ q , )  (37) 
q2 

(4) Free energy. The free energy of a layer of bidisperse 
chains is now considered. It should be emphasized that 
this is the principal thermodynamic characteristic in the 
theory of block copolymer superstructures. Intermediate 
calculations are omitted and only the resulting expression 
for the conformational free energy of the dry layer of 
bidisperse chains (the elastic component Fej ) is reported: 

AF= ~ a2pN,~ G(0(, q2) 

= 2AFl(g( 1 + 0(q2)2G( 0(, q2) (38) 

where AF~a~ is the free energy of a planar layer of chains 
of length N1, equation (15), and the function G(0(, q2) is 
rather cumbersome and contains the value 11 = h,/r 
determined by equation (34) and the value u - u(z = h2) 
determined by equation (31): 

G(0(, q2) = (1 + 0(qz){x//~ - -  1216(1 + 0()u 2 

+ 0.5l~u(1 - 50( - 100(2) I~(1 + 0() 
2 

- -  U3(6 - -  0( - -  50(2)] "-~ [ - -0 .5 /40( (1  + 50() 

+ 0.5/2u2( - 10 + 30( + 150(2) 

- 5 ( 1  + 0 ( ) u 2 ( u  2 - IF) 
+ u4(6 - 0( - 50(2)]} - 3120(q2 (39) 

The dependence of AF on q2 for various 0( is shown in 
Figure 8. It is clear that it is not monotonic and passes 
through a minimum which is displaced towards lower q2 
values and becomes deeper with increasing 0(. It should 
be recalled that in the case of a planar layer of bidisperse 
chains the conformational free energy per unit area 

AF L = AF'~(1 + 0(q3) (40) 

increases monotonically with q2 at any 0( values. The 
reasons for the qualitatively different behaviours of free 
energy in a planar and cylindrical layer will be considered 
below. 

Convex layer of bidisperse chains 
Theory. Let us now consider a dry convex layer formed 

by grafted chains of N, and N 2 = N,(1 + 0() units, with 
their fractions being equal to ql and q2. As before, let 
H1 and HE be the thicknesses of the short-chain sublayer 
and the entire layer, respectively. Restricting ourselves 
to the case of strongly convex layers, hz/r > 1, and taking 
into account the results of the analysis for monodisperse 

0.5 

1 

B C 

I :_ 
0 0.5 q2 

Figure 7 Mean length fl of the tie part of long chains in a short-chain 
sublayer at different ct = 0  (A), 1 (B), ~ (C), equation (36); 
FEF approximation 
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Figure 8 (a) Three-dimensional plot of relative free energy AF/2AFI~ 
in a system of coordinates q2 and • and (b) the two-dimensional 
cross-sections at different ~t, equations (38) and (39). The values of 
are shown on the curves 

layers, it is reasonable to assume that the free ends of 
short and long chains are concentrated near x' = H a and 
x' = / /2  respectively, i.e. 

Oi(Z) = qi(5(2 --  hi) (41) 

where, as before, linear characteristics are divided by 
the height of a planar layer H~g '. In the framework of 
FEF approximation [-equation (41)], it is also natural to 
assume the average length of the tie part of long chains 
in a sublayer of short chains to be equal to N,, i.e. to 
take fl(q2)= 1 at all q: values (broken line in Figure 7). 
It should be noted that the results obtained above for a 
concave layer of bidisperse chains justify this approxi- 
mation. As can be seen from Figure 7, the transition from 
strongly concave layers to a planar layer is accompanied 
by an increase in ft. It is clear that the trend towards a 

further increase in /3 should be retained upon the 
transition from a planar to a strongly convex layer. 

(1) Local stretching functions. According to the 
approximation fl(q2)= 1, a convex layer of bidisperse 
chains is divided into two cylindrical layers formed by 
monodisperse chains consisting ofN a and (N 2 - N 1 ) units 
grafted at densities of 1/a and q2x/ /r /ax/r+ 2, respec- 
tively. Hence, it is possible to use the results for a 
monodisperse dry layer. The application of equation (20) 
gives the following equation for the local stretching 
functions of grafted chains: 

ff, l ( z ) _ a  r 
a ( r + z )  

(42) 
0 < z < h a  1 _ 

ff~2(z)= ff"(Z) (qzx/r/x/r + 2 h 1 < z < h2 

Note that the jumps of functions/~a(z) and ff~z(Z) at the 
boundaries z = ha and z = h2 are a consequence of the 
approximation that all free chain ends are fixed at the 
corresponding boundaries z=h~  and z = h  2. In a 
precisely solved problem with a spatial free-end 
distribution, E~(z) and Ez(Z ) would become equal to zero 
at the boundaries, as in the case for concave layers. 

(2) Layer thickness. The condition of dense layer 
packing in a cylindrical layer determines the total layer 
thickness: 

h2 = H2/H'~g = - r  + x /r  2 + 2r(1 + aq2) (43) 

The short-chain sublayer thickness [with the use of the 
condition fl(q2)= 1] is given by: 

h, = Ha /H '~  = - r  + x//r(r + 2) (44) 

This value is evidently independent of e and q: and 
coincides with the thickness h of a layer of monodisperse 
chains consisting of N, units grafted onto a cylinder of 
radius r [equation (7), lower signs]. 

(3) Free energy. Using the subdivision of a bidisperse 
layer into monodisperse layers and using equation (21), 
one obtains the conformational free energy: 

[-r 
AP = Are /  ln(1 + 2/r) 

+ e q ~  In 1+  (45) 

where AF~g is determined from equation (22). 

DISCUSSION 

The analytical theory developed here describes the 
conformational characteristics of dry layers with 
cylindrical morphologies formed by grafted polymer 
chains mono- or bidisperse in length. The theory is based 
on the concept of the considerable stretching of 
macromolecules in grafted layers normal to the grafting 
surface. This stretching is caused by volume interactions 
between units of grafted chains under the conditions of 
their marked overlapping. Compared to the planar 
grafted layer considered in the first paper in this series a, 
the chains in concave cylindrical layers are more stretched 
and those in convex layers are less stretched (the grafting 
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A'~_ A F 
AF 

0.5 

I I 

1 0.5 0 

Convex layer 

Figure 9 
in FEF approximation versus h/r; 

, equations (18) and (21) 

0.5 1 ~h 

Concave layer r 

Relative error in the calculation of free energy (Aft - AF)/AF 
, equations (14) and (46); 

density 1/a is assumed to be constant). The reason for 
this is a decrease (or increase) in the space accessible to 
chains with increasing distance from the grafting surface. 
In the case of concave layers this causes the displacement 
of the mean position of free ends of grafting chains from 
the centre of the cylinder to the grafting surface (Figure 
3). In contrast, in the case of convex layers, the mean 
position of ends is displaced from the grafting surface to 
the layer periphery. 

The stretching of polymer chains with respect to their 
Gaussian size makes it possible to use the so-called 
Newtonian approximation 9 for describing the conforma- 
tions of grafted chains. It is possible to obtain a precise 
solution for the case of concave 6'9 and planar layers 9'~ L 15 
(for a discussion of the limits of the applicability of the 
theory, see ref. 1). In the case of convex layers, several 
approximations should be used, in particular, the FEF 
approximation in the case of considerable curvature. 

Let us evaluate the error in the calculation of the 
conformational free energy A, e of convex layers of 
monodisperse chains in the FEF approximation. For  this 
purpose, let us first consider the free energy of a concave 
monodisperse layer with free ends at the outer boundary. 
This is given by equation (21) for a convex layer using 
the FEF approximation after replacing r by - r :  

AF=AFI~ - 2 1 n ( 1 - h / r )  ~ r l n  r (46) 
(h/r)(2 - h/r) - AFI~g 2 r - 2 

Figure 9 shows the relative error of this approximation, 
( A F -  AF)/AF. As before, AF is calculated by equation 
(14), with the free ends distribution throughout the layer 
thickness being taken into account. It is clear from Figure 
9 that FEF  approximation is inapplicable to markedly 
concave layers as it leads to a large error. The error 
decreases with decreasing concavity and for a planar layer 
is ~20%.  The broken line in Figure 9 shows a further 
decrease in the error of the FEF approximation for 
weakly convex layers. This dependence is obtained by 
the analytical continuation of the expansion of 
(AF--AF) /AF on h/r near 1/r = 0 (with a subsequent 
change in the sign of r). It is evident that for strongly 
convex layers h/r > 1, the FEF approximation provides 
sufficient precision for the AF calculation. Some 

additional evaluations confirming this conclusion are 
given in the Appendix. 

After this paper had been completed, we received a 
preprint of a paper by Ball and co-workers 17 which 
investigated the equilibrium characteristics of a convex 
grafted cylindrical layer formed by long monodisperse 
chains. These authors had developed a system of integral 
equations which made it possible to obtain, in particular, 
a precise solution for the free energy of the system taking 
into account the existence of a 'dead' zone free from ends 
inside of which g(z) = 0. The results of this work have 
shown that in the case of a maximum curvature of a 
cylindrical surface, R --* 0, the precise solution coincides 
with the expression for free energy l-equation (21)] 
obtained in the FEF approximation. 

It seems to us more essential that the authors just 
notice that the true free energy should be lower than the 
FEF approximation, equation (21), but higher than the 
analytical continuation of equation (14) to the region of 
convex layers, equation (18a). The reason for this is the 
fact that the fixation of free ends on the external surface 
of the layer limits the class of functions in which the 
minimum of the functional (1) of free energy is obtained. 
In contrast, the absence of limitations of the sign of 
function g(z) broadens the class of functions as compared 
to the physically possible class [9(z) >/0]. It can be seen 
from Figure 4 that in the region of convex layers both 
approximate dependences are close to each other. 
Hence, the precise solution lying between them may be 
approximated with good precision by any of these 
approximate dependences, in particular, by equation 
(21). 

This result may be extended to the case of bidisperse 
chain layers. It can be seen from equation (45) 
determining the conformational free energy of the convex 
bidisperse chain layers, that at r ~ ~ ,  i.e. upon the 
transition to a planar layer, we have: 

AP = AP e = AFIre'(1 + ctq 3) = 12 A F ~ (  1 + ~q2a ) (47) 
7[ 2 

instead of the rigorous equation (40). Hence, FEF 
approximation in a planar bidisperse layer under the 
condition fl(q2)= 1, leads only to an increase in the 
numerical coefficient by 20% (1 --* 12/7[ 2, just as for a 
monodisperse layer) but the functional dependence of AP 
on all the parameters contained in AP (N1, a, ~ and q2) 
remains unchanged. This suggests that for convex 
bidisperse layers the relative error (A~--AF) /AF does 
not exceed that for monodisperse layers. It follows from 
the plot in Figure 9 that the real evaluation of error in 
the case of strongly convex layers (h/r > 1 ) hardly exceeds 
10%. 

Below we shall discuss the structure and properties of 
cylindrical layers of grafted bidisperse chains. As to the 
monodisperse chains layers (see the pioneering work in 
ref. 9 where the main results for dry curved layers were 
obtained and also ref. 10) only one interesting fact 
concerning the free energy of a concave layer of limiting 
curvature, i.e. a layer densely filling all the cylinder space, 
will be mentioned. It follows from equations (14) and 
(15) that the free energy of this layer per chain is: 

AF, o ~7 ~ = 2AF'?g a2~ ~ N, la 2 (48) 

Let us consider the variation in this value with the change 
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in chain length N1. There are two reasons for this change. 
If a is constant (i.e. the linear density of chains grafting 
x = 2rtR/tr is not constant), then the free energy of the 
chain increases in proportion to N~. If x is constant (i.e. 
the total number of chains grafted onto a cylinder is 
fixed), then N1/t7 2"~/~2= constant(N1). In other words, 
if the cylinder is filled with grafted chains, and then each 
chain increases its length and a completely filled cylinder 
of a larger radius is obtained, then the free energy of each 
chain (and of the entire cylinder) does not change. Note 
that this invariability of the free energy is characteristic 
only of the cylindrical layer and is a consequence of its 
geometry. 

Structure of bidisperse layers 
Let us compare the structural characteristics of 

cylindrical and planar layers formed by polymer chains 
of two lengths. As has been shown elsewhere/, the 
thickness of the short-chain sublayer in a planar case is 
independent of the long chain degree of polymerization 
(at fixed N~ and tr values). The same refers to the average 
length [JN~ of parts of tie chains in this sublayer: /7 
depends only on the fraction q2 of tie chains and does 
not depend on N2. 

A different situation is observed in the case of dry 
concave layers completely filling the cylinder. The main 
effect is caused by the fact that in this case the cylinder 
radius is a function ofN~, ~t and q2, i.e. the relative radius 
r is a function of ct and qz [equation (32)]. Hence, the 
dependences of the characteristics of the monodisperse 
layer on r considered earlier are also manifested here as 
the dependences of these characteristics on q2 and ct. One 
of these characteristics is the thickness of the short chain 
sublayer H~ (or the length fiN a of the parts of tie chains 
in the sublayer). A direct influence of r on the sublayer 
thickness leads to an increase in its relative thickness h a 
(and the mean length of the parts of tie chains fl) with 
increasing r (or ~) at a fixed q2 value (Fioures 6 and 7). 

Moreover, an additional effect exists caused by the 
influence of the polydispersity of grafted chains. At fixed 
values of r, tr and q2, the thickness of the short-chain 
sublayer hi is a function of the length of long chains. 
Thus, the sublayer thickness h~ is minimal at a 
maximum possible value of N~ = N 2 = Nl(1 + ~t) when 
all the cylinder space is densely filled with polymer units 
[equation (34)]. With decreasing N~ < N2, i.e. when the 
end parts of long chains are 'cut off' and the radius of 
the void in the centre of the cylinder increases, the 
thickness of the short-chain sublayer increases and attains 
maximum value at N~ = N~, i.e. in a monodisperse layer 
of chains consisting of N 1 units [in this case h a = h' 1 is 
determined as the thickness of a sublayer in which the 
ends of the fraction q~ = 1 - q 2  of grafted chains are 
distributed, equation (12)]. The effect is relatively slight 
and in a certain sense, paradoxical. In fact, when the 
ends of long chains filling the inner part of the cylinder 
are cut off, the tie chains, i.e. the parts of long chains 
located in the sublayer of short chains, become longer. 
Thus, the cutting of the ends of long chains leads to 
additional 'drawing in' of long chains inside the 
short-chain sublayer. It may be shown that this effect is 
due to the properties of the long-chain sublayer. If this 
sublayer is compact and has no void at the cylinder 
centre, then, as has been discussed above, the 
conformation free energy of this sublayer depends only 

on the linear grafting density and does not depend on 
the position of the boundary between the two sublayers. 
The dependence on the position of the boundary appears 
when the cylinder is hollow and contains a void. This 
leads to the additional displacement of the boundary 
between the two sublayers towards the centre of the 
cylinder. This effect increases with r. 

Free energy of a bidisperse layer 
The most important result of our work is the form of 

the free energy dependence on the composition of a dry 
layer consisting of two-length chains. Figure 10 shows 
the characteristic dependences AF(q2) for the planar layer 
(curve B), and for concave (curve A) and convex (curve 
C) layers grafted onto a cylindrical surface of the same 
radius r = 2(1 + ~q2). It can be seen from Fioure 10 that 
in all three cases the dependences AF(q2) lie below the 
straight lines AF' = qaAF(ql = 1) + q2AF(q2 = 1) deter- 
mining the mean free energy obtained in the cases of 
segregation of chains with different lengths in a grafted 
layer (broken lines in Figure 10). This fact indicates that 
the mixing of chains of different lengths in a layer is 
always thermodynamically advantageous. It should be 
emphasized that this is not a result of a gain in the trivial 
mixing entropy of grafted chains (this weak effect is not 
taken into account). As has been shown for a planar 
layer La5 this gain is due to the fact that short chains 
located between long chains decrease the effective density 
of grafting in the long-chain sublayer. This, in turn, leads 
to a decrease in their stretching and steric interactions 
with one another. The same effect also occurs for curved 
layers but is weaker for a convex layer because of the 
increase in the available space with increasing distance 
from the matrix and stronger in the concave layer for 
the opposite reason. [It can be seen from Figure I0 that 

AF 
AF~aO m ..4 

/ /  
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J J /  t I 
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Figure 10 Relative free energy AF/AFI~ of a bidisperse layer versus 
q2 for (A) concave cylindrical, (B) planar and (C) convex cylindrical 
layers for a value of ~ = 0.8 and the radius of cylinder r = 2(1 + ~q2)- 
--- ,  Dependences qlAF(ql = 1)+ q2AF(q2 = 1) 
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Figure 11 (a) Three-dimensional semilogarithmic plot of relative free 
energy k = AF/2AF L in a system of coordinates q2 and ct; (b) the 
two-dimensional cross-sections at different ct, equations (38)-(40). The 
values of ct are shown on the curves 

at fixed layer composition, q2 is constant, the difference 
(AF' - AF) increases in the sequence: convex < planar < 
concave.] 

It is clear from Figure I0 (see also Figure 8) that in 
contrast to the monotonic dependences AF(qE) in planar 
and convex layers {curves B and C), in the case of a 
concave layer AF(q2) goes through a pronounced 
minimum {curve A). 

In the case of a concave bidisperse layer densely filling 
the inner part of the cylinder, the cylinder radius is related 
to the fraction q2 of long chains and to the relative 
difference in lengths ~ by equation (32). The increase in 
q2 at a fixed c¢ leads to increasing shallowness of the 
short-chain sublayer. This leads to a decrease in the 
conformational free energy of the short-chain sublayer. 
Simultaneously, the conformational free energy of the 
long-chain sublayer increases with increasing linear 
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density of their grafting, which, in turn, increases with 
q2. The summation of these two contributions to free 
energy leads to the appearance of the minimum on the 
dependence AF(q2). 

Figure I I  shows the dependences of one-half of the 
free energies ratio k = AF(~, q2)/2AFL(O~, q2) on q2 for 
different values of ~. Both free energies are related to the 
dry bidisperse chain layers: AF(~, q2) characterizes the 
concave cylindrical layer (r = 1 + ~q2); AFL(~, q2) charac- 
terizes the planar layer (r--, ~ ) .  At q2 = 0 (concave 
cylindrical and planar monodisperse layers of short 
chains) we have k--  1: free energies differ by a factor of 
two at h/r -- 1 [equation (14)]. With increasing q2, when, 
as before, the main contribution to AF is still provided 
by short chains, k decreases tending towards 1/2 
(short-chain sublayer becomes shallower, and its 
conformational energy approaches the free energy of the 
planar layer). With further increase in q2, when the main 
contribution to free energy begins to be provided by long 
chains, k passes through a minimum, then increases and 
at q2 = l (both concave cylindrical and planar mono- 
disperse layers contain only long chains) becomes again 
equal to unity. With increasing ~, the dependences k(q2) 
become sharper, the depth of the minimum increases and 
its width decreases. In the limit ct ~ :~, we have k -~ 0.5 
at q2 -~ 0. 

In the next paper in this series 19, the results obtained 
here will be used for the investigation of stable 
morphologies in mixtures of lamellar- and cylinder- 
forming block copolymers and it will be shown that the 
extreme character of the dependence of AF on the fraction 
q2 for concave layers leads to a non-trivial form of the 
diagram of states of superstructures in block copolymer 
mixtures. It should be emphasized that the results 
obtained here are valid under the conditions of stretching 
of all chains. 
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APPENDIX 

In order to give an additional characterization of convex 
layers of a considerable curvature, an approach 
developed previously ia for a planar layer preceding the 
development of the analytical theory may be used. In 
reference 18, a numerical solution of the equations of the 
type of equations (1) and (3)-(5) has been carried out 
by approximating the function g(z) by a fixed number n 
of discrete values: 

g(z)= ~ gif(z-zl)  z .=h (A1) 
i=1 

The values of gi and zi were determined by the 
minimization conditions. The transition to a precise 

solution should be carried out at n ---, ~ .  The comparison 
of the results of reference 18 with the conclusions of the 
analytical theory 12-~s shows that a series of character- 
istics of planar layers, in particular, the value of ~/h, 
determining the mean position of free ends in a layer and 
the value AF of the free energy of the layer are 
approximately linear functions of 1/n. Therefore, the 
transition from the unimodal function g(z) determined 
by equations (19) or (A1) at n = 1 (FEF approximation, 
all ends are fixed on the outer boundary) to a bimodal 
function determined from equation (A1) at n = 2 (part of 
the ends is fixed on the outer boundary of the layer and 
the other part is fixed at some height inside the layer) 
leads to the appearance of approximately half the 
difference between the precise solution and the solution 
from the FEF approximation. Thus, for a dry planar layer 
at n = 2 we have 18 ~/h = 0.89 [the precise value 0.78 is 
given by equation (10)] and AF(n = 2)/AF(n = 1) = 0.89 
[precise value 0.78, cf. equation (22)]. For a layer of 
chains grafted onto the surface of an infinitely thin 
cylinder (h/r ~ ~), the scheme in reference 18 does not 
lead to an energy gain in passing from n = 1 to n = 2, 
which confirms the possibility of the FEF approximation. 
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